The NGATHA genes direct style development in the Arabidopsis gynoecium.

نویسندگان

  • Marina Trigueros
  • Marisa Navarrete-Gómez
  • Shusei Sato
  • Sioux K Christensen
  • Soraya Pelaz
  • Detlef Weigel
  • Martin F Yanofsky
  • Cristina Ferrándiz
چکیده

The gynoecium is the most complex floral organ, designed to protect the ovules and ensure their fertilization. Correct patterning and tissue specification in the developing gynoecium involves the concerted action of a host of genetic factors. In addition, apical-basal patterning into different domains, stigma and style, ovary and gynophore, appears to depend on the establishment and maintenance of asymmetric auxin distribution, with an auxin maximum at the apex. Here, we show that a small subfamily of the B3 transcription factor superfamily, the NGATHA (NGA) genes, act redundantly to specify style development in a dosage-dependent manner. Characterization of the NGA gene family is based on an analysis of the activation-tagged mutant named tower-of-pisa1 (top1), which was found to overexpress NGA3. Quadruple nga mutants completely lack style and stigma development. This mutant phenotype is likely caused by a failure to activate two auxin biosynthetic enzymes, YUCCA2 and YUCCA4, in the apical gynoecium domain. The NGA mutant phenotypes are similar to those caused by multiple combinations of mutations in STYLISH1 (STY1) and additional members of its family. NGA3/TOP1 and STY1 share almost identical patterns of expression, but they do not appear to regulate each other at the transcriptional level. Strong synergistic phenotypes are observed when nga3/top1 and sty1 mutants are combined. Furthermore, constitutive expression of both NGA3/TOP1 and STY1 induces the conversion of the ovary into style tissue. Taken together, these data suggest that the NGA and STY factors act cooperatively to promote style specification, in part by directing YUCCA-mediated auxin synthesis in the apical gynoecium domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium

The four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of ...

متن کامل

Arabidopsis gynoecium structure in the wild type and in ettin mutants

The gynoecium is the female reproductive structure of flowering plants. Here we present a description of the Arabidopsis thaliana gynoecium at anthesis. The cylindrical organ can be broken down into three longitudinal regions arranged in an apical-basal order: stigma, style, and ovary. Each region can be distinguished histologically and morphologically. The transmitting (pollination) tract is a...

متن کامل

Interactions of CUP-SHAPED COTYLEDON and SPATULA Genes Control Carpel Margin Development in Arabidopsis thaliana

A characteristic feature of flowering plants is the fusion of carpels, which results in the formation of an enclosed gynoecium. In Arabidopsis thaliana, the gynoecium is formed by the fusion of two carpels along their margins, which also act as a meristematic site for the formation of internal structures such as ovules, the septum and transmitting tract. How gene interactions coordinate the fus...

متن کامل

TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis.

Mutations at the TOUSLED (TSL) protein kinase locus in Arabidopsis cause reduced differentiation of apical gynoecial tissues and eliminate the fusion of the style and septum. TSL expression becomes confined to the developing style by stage 13, where it may promote expansion of tissues. Double mutant analysis suggests that ETTIN interacts with TSL, possibly by restricting TSL expression to apica...

متن کامل

The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana.

Successful fertilization in plants requires the properly coordinated development of female reproductive tissues, including stigma, style, septum and transmitting tract. We have identified three closely related genes, HECATE1 (HEC1), HECATE2 (HEC2) and HECATE3 (HEC3), the expression domains of which encompass these regions of the Arabidopsis gynoecium. The HEC genes encode putative basic helix-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2009